
You are probably already familiar with lists that are used for navigation or for collecting
information from users. You've seen pull-down menus with options for navigating to a page or
view within an app. Online questionnaires, surveys, and other types of forms commonly use
dropdown lists, radio buttons, and check boxes to make it easy for users to select and input
data. When used the right way, lists are a compact and intuitive way for users to interact with
your app while giving you an effective way to manage the data that they input into the system.

In this tutorial, you'll learn how to configure a dropDownButton that will enable users to
navigate to different pages in your app. You'll also learn how to define a flow in which users are
prompted to select inputs from dropdown list, instanceList, radioGroup, and checkBoxList.

Prerequisites
Before starting this tutorial, you should complete the following tutorials:

1. Getting Started with Workday Extend

2. Create an App

3. Access Workday Data

Estimated Time to Complete: 40 minutes

COUR SE OVER VIEW

Christopher Johnson

Copy of Get User Input from Lists

Course Overview

Introduction: Get Data from Lists

Activity 2.1: Add Data Providers and Define a Flow

Activity 2.2: Add a radioGroup with Two Options

Activity 2.3: Add a Dropdown List That Displays Organization Types

Knowledge Check

Lists are a great way to create a good user experience. With Workday Extend, you can use lists for navigation

between pages and you can use lists to prompt users to input data.

In this tutorial, you'll learn how to use a dropDownButton for navigation between pages in your app. Then

you'll use Workday Extend's dropdown, instanceList, radioGroup, and checkBoxList widgets to create a

series of prompts. The user moves from one prompt to another to create a collection of related inputs.

You'll also define a flow and use flowVariables to persist the data throughout the flow so that it can be

accessed by other pages.

Look at What You'll Build

Watch the video to see how you'll use lists in your app to create navigation and to get user inputs.

Lesson 1 of 6

Christopher Johnson

Course Overview

Learning Objectives

When you’ve completed this tutorial, you will be able to:

1. Use dropDownButton widgets to enable users to navigate between pages in an app.

2. Use instanceList and instanceListLoopTag to populate dropdown, radioGroup, and checkBoxList

widgets.

3. Use a flowVariable to bind, submit, and persist values from different list widgets.

How you’ll learn

Activity 1: Create a new app with dropdown button navigation –

In this activity, you’ll:

1. Create a new app.

2. Add three view PMD pages and one edit PMD page with provided endPoints and outboundEndPoints..

3. Add navigation to the PMD pages using dropDownButtons.

4. Validate and deploy the app.

Activity 2: Add lists that will get data from users –

In this activity, you’ll:

1. Add dropdown, radioGroup, and checkBoxList widgets to the getUserInput PMD page.

2. Use instanceList to populate the list values and bind values from the dropdown list and the radioGroup
list.

3. Use instanceListLoopTag to populate checkBoxList values.

4. Validate and deploy the app.

Activity 3: Display data that users input with lists –

In this activity, you'll:

1. Add tags to display chosen values bound from each list widget.

2. Add flowVariables.

3. Validate and deploy the app.

I NC R E A S E YO U R V E LO C I T Y W I T H A PP PR E V I E W

Increase Your Velocity with App Preview
App Builder's App Preview enables you to validate, preview and test your PMD pages without deploying your

app to a tenant. It's a big time-saver and a great way to do iterative development. You can see what your

changes look like in your app against your actual tenanted data.

Some things to remember when using App Preview:

App Preview enables you quickly validate and test changes, but it does not save those changes to App
Hub for you. Any changes you test with App Preview are saved to your current session. Make it a habit
to Save to App Hub when you are satisfied with your changes and want to save your work.

App Preview accesses inbound endPoints or outboundEndPoints using a Data Source. You can either:

Configure Mock Data to precisely control what your page will display using static data.

Connect to a Tenant to actually fire the inbound and outbound endpoints in your app. To Connect
to Tenant, click the Manage Data Source icon and then log in to a development or implementation
tenant.

The App Preview connection to your tenant will time-out after approximately 15 minutes, so you may
get an HTTP error. No worries. Just click the Manage Data Source icon again and reconnect.

 Note: This tutorial assumes you have App Preview open and will test your changes in App

Preview before Saving and Deploying your work.

Use the Manage Data Source icon to connect to a tenant and preview and test your app live
from App Builder.

Contact extend@workday.com for additional information

C HA L L E NG E 1 : C R E AT E NAV I G AT I O N W I T H A D R O P D O W N
B U T TO N

To ensure you have a fluid learning experience, we recommend you
complete the practice activities in order, as they progressively build
upon one another.

mailto:extend@workday.com

These days, a convenient way to collect information from a worker or a customer is to ask them to enter

information online, usually in a questionnaire or some other form. There are challenges to doing it this way.

The quality of the data that is collected is dependent on the user's experience. If it takes too long to complete

a form or questions are hard to answer, the user could become frustrated and the quality of the data that is

collected could be impaired.

This is why using lists to get are an efficient and effective way to get users' input. All they have to do is pick

from a list of options. It's a quick and easy way for the user to provide high-quality information while

maintaining the integrity of the data.

In this lesson, you’ll:

To the getUserInput edit page, you'll add four list widgets: dropdown, instanceList, radioGroup, and
checkBoxList.

Employ different methods that will automatically populate each list with values that the user can select
as inputs.

Use flowVariables to persist the data inputs and make the data accessible to other pages in your app.

Configure a flow and flow steps that will guide users from one page to another.

Lesson 2 of 6

Christopher Johnson

Introduction: Get Data from Lists

This illustration shows how you'll use flowVariables to persist data that a user selects from a
series of lists and to send it from one page (getUserInput) to another page (viewUserInput).

A C T I V I T Y 2 .1 : A D D D ATA PR O V I D E R S A ND D E FI NE A FLO W

The purpose of using lists for data input is to give users a list of options that they can easily search and

select. You can manually hard-code the data into the list, but a best practice is to populate the lists using an

existing database of values with which you can populate the lists.

Workday REST APIs are a convenient source of commonly used data, such as lists of organization-types,

organization names, and country names. Your first step is to connect your app to the relevant Workday REST

APIs.

In this activity, you’ll:

Add dataProviders to the AMD file.

Define a flow.

Add EndPoints and outboundEndPoints to the getUserData edit page.

S TA R T A C T I V I T Y

Lesson 3 of 6

Christopher Johnson

Activity 2.1: Add Data Providers and Define a Flow

Add Data Providers to Your App
Data providers will enable your app to get endpoint data and use it to populate the lists. To add dataProviders

to your app:

1. Open your app’s AMD file and locate the "applicationId" tag.

2. After the "applicationId" tag, insert a dataProviders array.

3. In the dataProviders array, add the base URLs for the following Workday REST APIs:

Common (v1)

Person (v1)

Wql (v1)

4. Click Save to App Hub to validate and save your code changes.

1

 "dataProviders": [

 {

 "key": "workday-common",

 "value": "https://api.workday.com/common/v1/"

 },

 {

 "key": "WDAY-WQL",

 "value": "https://api.workday.com/wql/v1/"

 },

 {

 "key": "WDAY-Person",

 "value": "https://api.workday.com/person/v1/"

 }

]

https://developer.workday.com/explorer/services/common-v1/apigroups/organizationtypes
https://developer.workday.com/explorer/services/person-v1/apigroups/countries
https://developer.workday.com/explorer/services/wql-v1/apigroups/datasources

A D D I NB O U ND E ND PO I NT S

Add Inbound Endpoints to the getUserInput Page
In this task, we'll add three endPoints to the getUserInput page. The endPoints will fetch the data that we will

use to populate the lists that will be displayed on the page.

1. Open the getUserInput page and find the endPoints array.

2. In the endPoints array, copy and paste the three endpoints from the code block below.

3. Click Save to App Hub to validate and save your code changes. Note: You will receive warnings that the
endpoints are declared but not used in the PMD. This will be addressed in the later activities when we
reference the endpoints in the list widgets that we'll add to the getUserInput page.

Code Block — In your app's AMD file, this is how your dataProviders should appear for the base URLs.

2

 "endPoints" : [{

 "name" : "orgTypes",

 "baseUrlType" : "workday-common",

 "url" : "organizationTypes",

 "authType" : "sso"

 }, {

 "name" : "organizations",

 "deferred" : true,

 "baseUrlType" : "workday-common",

 "url" : "<% 'organizations?organizationType=' + id %>",

D E FI NE T HE PA G E FLO W I N T HE A M D

Define a Flow in the AMD
Because your app will get user input from a sequence of lists displayed on the getUserData edit page, you'll

need to define flow with flow steps. A flow is a sequence of pages or tasks that guide users through a

multistep transaction.

The figure below illustrates how the flow you'll create works. The flow will start on the getUserInput edit

page, which is step 1. The flow will override the edit page's default OK button so that it will redirect the user

to step 2, which is the viewUserInput page and where the flow ends. The transition from one step to another

is handled by conditional logic.

As you'll see in the next task, an outboundVariable will persist the data and make it accessible to other pages

in the app during the lifecycle of the flow.

 "authType" : "sso"

 }, {

 "name" : "countries",

 "baseUrlType" : "WDAY-Person",

 "url" : "countries?limit=10",

 "authType" : "sso"

 }],

Code Block - Copy and paste the endpoints into the getUserInput page. The endpoints will fetch the data that will

be used to populate the lists.

3

https://developer.workday.com/documentation/zji1528861641063

Define the flow:

1. In your app's AMD file, find the the "appProperties" array.

2. After the "appProperties" array, add a "flowDefinitions" array.

3. In the "flowDefinitions" array, define a new flow with an "id" set to "flowNewPage" and an empty
"flowSteps" array.

4. In the "flowSteps" array, define step 1 of the flow using the attributes listed below. The getUserInput
will start the flow.

"id" : "step1"

"startsFlow" : true"

"taskId" : "getUserInput"

5. In step1, add a transition that will define the condition in which the user will go to step2 in the flow. Add
a "transitions" array to step1, and in the array, add an object with these attributes:

"order" : "a",

"value" : "step2"

 "condition" : "true"

6. After step1, add step 2 with the attributes listed below. The viewUserInput page will end the flow.

"id" : "step2"

"startsFlow" : true"

"taskId" : "viewUserInput"

7. Click Save to App Hub to validate and save your code changes.

"flowDefinitions": [

 {

 "id": "flowNewPage",

 "flowSteps": [

 {

 "id": "step1",

 "transitions": [

 {

 "order": "a",

 "value": "step2",

 "condition": "true"

 }

],

 "startsFlow": true,

 "taskId": "getUserInput"

 },

 {

 "id": "step2",

 "endsFlow": true,

 "taskId": "viewUserInput"

 }

]

 }

],

Code Block — Copy this code to add a flow definition with two steps.

Annotated Flow Definition

A flow definition specifies the sequence of pages or tasks in a flow, and determines the conditions in which

a transition is made from one page to another. The annotations on the image below describe the key element

of a flow definition.









flowSteps array

In the flowSteps array, you define the steps of your flow. A flow step defines each page or task in a flow.



Transition

The transitions array defines the conditions for the next step in a flow.



endsFlow

The endsFlow attribute indicates that this is the last step in the flow and the taskId specifies the page.



startsFlow

The startsFlow attribute indicates that the page defined in the taskId beings the flow.

A D D O U T B O U ND E ND PO I NT S TO T HE E D I T PA G E

Add outboundData to the getUserInput Page
When you add outboundData to a page, you change the page from a view page to an edit page. The outbound

endpoints in the outboundEndPoints array are used for submitting data to APIs as well as to other pages in

your app.

4



The outboundVariable attribute, which is defined in the outboundEndPoints array, defines a collection of

variables that represent the users data input. The outboundVariable persists the data so that it can be

accessed by other pages in the app.

To add outboundEndPoints to the getUserInput page:

1. Open the getUserInput page and look for the "id": "getUserInput" tag, which you'll find at the top of the
page.

2. After the "id":"getUserInput" tag, add an outboundData object with a outboundEndPoints array.

3. In the outboundEndPoints array, create an object with "name" set to "transitionOutboundVars" and
"type" set to "outboundVariable".

4. Add a variableScope attribute and set it to "flow". The variableScope attribute defines the scope of the
outboundData. The value "flow" indicates that flowVariables are accessible to other pages during the
lifecycle of the flow.

5. After the variableScope tag, add a values array.

6. In the values array, define the four variables that will represent the user's data input. Each of the four
variable should include two attributes—outboundPath and value—as shown in this list:

"outboundPath": "orgType", "value": "<% orgTypes.value %>"

"outboundPath": "organization", "value": "<% instanceListOrgs.value %>"

"outboundPath": "favorite", "value": "<% favoriteRadioGroup.value %>"

"outboundPath": "countries", "value": "<% testCheckboxList.value %>"

7. Click Save to App Hub to validate and save your code changes.

 Remember: To make a page an edit page, you must add add outboundData or add the

attribute “pageType”: “edit page” to the page's presentation component.

Annotated outboundVariable Configuration

The values array of the outboundVariable defines and binds together the data from the lists. The data will be

persisted within the variableScope, which is the flow. Click the numbers in the below screenshot to learn

more about the structure of an outboundVariable.

 "outboundData" : {

 "outboundEndPoints" : [{

 "name" : "transitionOutboundVars",

 "type" : "outboundVariable",

 "variableScope" : "flow",

 "values" : [{

 "outboundPath" : "orgType",

 "value" : "<% orgTypes.value %>"

 }, {

 "outboundPath" : "organization",

 "value" : "<% instanceListOrgs.value %>"

 }, {

 "outboundPath" : "favorite",

 "value" : "<% favoriteRadioGroup.value %>"

 }, {

 "outboundPath" : "countries",

 "value" : "<% testCheckboxList.value %>"

 }]

 }]

 },

Code Block — Copy this code to define a collection of variables in an outboundVariable.







outboundVariable

in the outboundEndPoints array, use outboundVariable to define one or more variables that other pages can reference.

In this example, the outboundVariable defines a collection of variables in a values array. Each variable represents

data that the user selected from the dropdown, instanceList, radioGroup, and checkBoxList widgets.



https://developer.workday.com/documentation/lmd1529983805787
https://developer.workday.com/documentation/lmd1529983805787#section-defining-a-collection-of-variables

variableScope

Use the variableScope attribute to define the scope of the variables usage - a period when the variables can be

accessed by other pages in the app.

Setting the variableScope to "flow" means that pages can access the variable during the lifecycle of a flow. In this

tutorial, the scope starts on the getUserData page, where the user selects data from the four lists, and it ends on the

viewDataPage, which uses the variables to display the user's data.

You can set the variableScope to "session", which will make the variables available to other pages during the lifecycle

of a user's session.



https://developer.workday.com/documentation/lmd1529983805787#section-defining-the-variable-scope

Define variables in the values array

Specify a collection of variables in the values array of the outboundVariable. Define each variable with two

attributes: outboundPath and value. The outboundPath is the name of the variable. The value is the thing that you

want other pages to access, such data input by users.

Alternatively, you can define flow variables on the PMD tag itself using the valueOutBinding attribute. In this case, you

it's not necessary to define variables in the values array. Instead, the outboundVariable would be defined with two

attributes: name and variableScope.

D E PLOY A ND T E S T YO U R A PP

5



https://developer.workday.com/documentation/lmd1529983805787#section-defining-a-collection-of-variables
https://developer.workday.com/documentation/lmd1529983805787#section-defining-flow-variables-on-valueoutbinding-attributes

Deploy and Test Your App
Test your app to make sure it works:

1. Click Save and Deploy.

2. Select a tenant and click Deploy to Tenant. Login to the tenant, if necessary.

3. When the Deploy Successful box appear, select View in Tenant.

4. You should see the app's root page in the browser window. The app doesn't do much yet, but that will

change in the next activity!

Download the Code
The .rtf file below contains the final code for this activity. You can use the file as a reference for each task.

Activity2.1.zip
4.6 KB

In the next activity, you'll add a radioGroup widget that will ask the
user to select from two options. You'll use an instanceList to define

each option with an id and a descriptor.

https://articulateusercontent.com/rise/courses/4Zw8cl1zOsUTMAiFSrGI0-QHWCw7v7T6/WsIUIstbrf9dHULD-Activity2.1.zip

A C T I V I T Y 2 .2 : A D D A R A D I O G R O U P W I T H T W O O PT I O NS

A radioGroup widget enables a user to quickly pick one option (and only one option) from a short list; it

doesn't allow users to select more than one option. (Use the checkBoxList widget if you want to enable users

to pick multiple options from the list.) In this case, you'll configure the radioGroup to display two options that

will indicate if an organization is their favorite or not.

While the radioGroup list created in this activity will be short and simple, it will demonstrate some important

concepts that you will apply in the other lists that you will configure in this tutorial:

First, an instanceList will define each list option with an id and a descriptor. The radioGroup widget, as
well as the other list widgets, use the id and descriptor to populate the list with values represented by
the id and descriptor parameters.

The instanceList attribute is what allows the radioGroup to process the id and
descriptor parameters

Second, the valueOutBinding attribute will be used to assign a flowVariable, which will persist the
user's selected value and make it accessible to other pages in the app.

In this activity, you'll:

Add a radioGroup widget.

Use an instanceList attribute and the id and descriptor parameters to hard-code the list options.

Lesson 4 of 6

Christopher Johnson

Activity 2.2: Add a radioGroup with Two Options

Set the valueOutBinding to "flowVariables.favorite", which will persist the user's chosen value.

A D D A R A D I O G R O U P L I S T TO T HE E D I T PA G E

Add a radioGroup List to the getUserInput Page
In this task, you’ll configure a radioGroup that will display to radio buttons enable users to select Yes, to

indicate if their chosen organization is their favorite, or No to indicate that the organization is not their

favorite.

The radioGroup widget, like the other list widgets you'll configure in this tutorial, needs an id and a descriptor

for the values it displays on a list. When the data source is an API endpoint, radioGroup would use the values

attribute to specify the API endpoint and get the values from the id and descriptor located at the root level of

the data source.

However, in this case the radioGroup will display just two values: Yes and No. There's no need for a data

source, but radioGroup needs an id and descriptor to display each value. This is why you'll use instanceList

1

to hard-code the id and descriptor parameters for each option on the list.

1. In the getUserInput page, find the body > children array.

2. In the children array, replace the default "hello" text widget with a radioGroup widget defined by these
attributes:

“id”: “favoriteRadioGroup”

“label”: “Is this your favorite organization?”

“displayKey”: “descriptor"

3. After the radioGroup's label, add "hideDisplayOption" : "true". This will prevent radioGroup from
automatically generating a "None of the Above" option when the widget is not required ("required":
"true").

4. Add a "valueOutBinding" attribute that is set to "flowVariables.favorite". This creates a flow variable
that will persist the user's choice and make it available to other pages in the app during the lifecycle of
the flow.

5. Add an instanceList array that will specify an id and a parameter for each option on the list. The id
must be unique. The descriptor is the value that you want displayed on the list.

6. Click Save to App Hub to validate and save your code changes.

 {

 "type": "radioGroup",

 "id": "favoriteRadioGroup",

 "label": "Is this your favorite organization?",

 "hideDisplayOption": "true",

 "valueOutBinding": "flowVariables.favorite",

 "instanceList": [

 {

 "id": "yes",

 "descriptor": "Yes"

 },

 {

 "id": "no",

 "descriptor": "No"

Annotated radioGroup Configured with instanceList

The radioGroup widget is good for displaying a short list of options. Use the image below to see how

instanceList can be used to display a hard coded list of options using id and descriptor tags.

 }

]

 }

Code Block — Copy this code to add a radioGroup widget that will display two options: Yes and No.









radioGroup widget

The radioGroup widget displays a list of radio buttons, and a user can select only one option. A radioGroup is best for

a short list of options.



https://developer.workday.com/documentation/wez1518210811362#section-attributes

hideDisplayOption

By default, radioGroup will display a "None of the Above" option when the list is not required. To prevent radioGroup

from displaying "None of the Above" on the list, add "hideDisplayOption": "true".

If you want to require users to select an option, add "required": "true".



https://developer.workday.com/documentation/wez1518210811362

instanceList

When you want to display hard coded values in a radioGroup (or other list widgets), use instanceList.

Define the options you want displayed in the list with id and descriptor tags. The descriptor tag should be set to the

value you want displayed on the list.



https://developer.workday.com/documentation/hcb1512514976081

id and descriptor

The radioGroup widget, as well as other list widgets, display values represented by an id and descriptor.

The id is a unique value that distinguishes the value from others in the list. The descriptor is the value that is

displayed on the list.

PR E V I E W YO U R C HA NG E S I N A PP PR E V I E W

Preview Your Changes in App Preview
Preview the getUserInput page and check that the radioGoup works:

2



1. Open the getUserInput page and click the App Preview icon in the upper-right corner of the Content
Panel.

2. Make sure that the radioGroup list is displayed properly, similar to the image below.

Open App Preview to preview your code changes.

Download the Code
The .rtf file below contains the final code for this activity. You can use the file as a reference for each task.

Activity2.2.rtf
4.8 KB

https://articulateusercontent.com/rise/courses/4Zw8cl1zOsUTMAiFSrGI0-QHWCw7v7T6/YAVzOzueV-nvbHpr-Activity2.2.rtf

A C T I V I T Y 2 .3 : A D D A D R O PD O W N L I S T O F O R G A NI ZAT I O N
T Y PE S

In the next activity, you'll configure a checkBoxList that will use an
instanceLoop to populate a list of countries.

In this task, you'll create dropdown widget to display a list of organization types on the getUserInput edit

page. To populate the list, you'll use the values attribute to retrieve values from an API endpoint.

You'll remember from the previous task, list widgets need an id and descriptor to retrieve and display values.

By default, the values attribute will retrieve all values in the id and descriptor fields located at the root-level of

the endpoint data. (Later in this tutorial, you'll learn how to retrieve and display data from nested fields.)

In this activity, you'll:

Add a dropdown widget to the getUserInput page.

Use the values attribute to specify the endpoint data that will populate the dropdown list with
organization types.

Add an onChange event handler to trigger a PMD script that will populate a searchable list of
organization names based on the organization type that the user selects.

S TA R T A C T I V I T Y

Lesson 5 of 6

Christopher Johnson

Activity 2.3: Add a Dropdown List That Displays
Organization Types

Add a Dropdown List to the getUserInput Page
Users will start the flow by selecting an organization type from a dropdown list, which will then trigger an

onChange event that will use a PMD script to populate an instanceList with the names of organizations of

the same organization type chosen by the user.

1. In the getUserInput page, find the body section > children array.

2. Before the radioGroup list that you created in the last task, add a dropdown widget with these

attributes:

"type": "dropdown"

"label": "Pick an Organization Type from the dropdown list."

"id": "organizationType"

3. After the "id", add a values attribute and set it to “<% orgTypes.data %>”. This will the retrieve ALL the

values from the id and descriptor fields of the endpoint data.

4. After the values attribute, add a "selectedValues" tag and set it

to "2eb21d19e0a110106fecb6dd8e390931", which is the first id the list of values in the data endpoint.

This tag specifies the first id that will be displayed in the widget.

5. Add an onChange event that will use this Java expression to trigger a function that will populate a list

of organizations: "<% populateInstanceList(self.value) %>". In the next task, you'll create the

populateInstanceList function.

6. After the onChange event, add "valueOutBinding" and set it to “flowVariables.orgType”. The

valueOutBinding assigns a flow variable to the value that the user will select from the list. The flow

variable will persist the data and make it available to other pages during the lifecycle of the flow.

1

7. Click Save to App Hub to validate and save your code changes.

C R E AT E A PM D S C R I PT T HAT W I L L PO PU L AT E A L I S T O F
O R G A NI ZAT I O N NA M E S

 {

 "type" : "dropdown",

 "label" : "Organization Type",

 "id" : "organizationType",

 "values" : "<% orgTypes.data %>",

 "selectedValues" : "2eb21d19e0a110106fecb6dd8e390931",

 "onChange" : "<% populateInstanceList(self.value) %>",

 "valueOutBinding" : "flowVariables.orgType"

 },

Code Block — Copy this code to add a dropdown widget that will display a list of organization types.



2

Remember: When the values attribute is used to specify endpoint data, it will retrieve the

entire dataset stored in the root-level id and descriptor fields. If you want to override the
descriptor to display a value from another field, set the displayKey attribute to the field with

the value that you want displayed. You can also override the id to display a value from

another field using the idKey attribute.

https://developer.workday.com/documentation/ifx1512428281960#section-attributes

Create a PMD Script Will Populate a List of Organization
Names
Next, we want to populate a second list that will display names of organizations that are the same

organization type that the user selected from the first dropdown list. To do this, you'll add an onChange

attribute to the dropdown list created in the previous task. Then you'll write a PMD script that will be triggered

by an onChange event.

1. In the getUserInput page, add an onChange event that will trigger a PMD script named
 populateInstanceList.

2. In the getUserData page, find the page id, which is located at the top of the page.

3. After the "id" : "getUserInput" tag and before the "outboundData" tag, add a PMD script that will
populate an instanceList of organizations.

4. Validate and save your code.

 "script": "<%

 var populateInstanceList = function(orgId) {

 if(!(empty orgId)) {

 console.info('organization type ID is ' + orgId);

 var listData = organizations.invoke({'id': orgId[0

 console.info('endpoint response is ' + listData.da

 instanceListOrgs.setValues(listData.data.map(x =>

 } else {

 instanceListOrgs.setValues([]);

 }

 };

 %>",

Code Block — Copy this code to add a PMD script that will populate the instanceList.

Annotated Dropdown List Configuration

Dropdown lists can allow you the ability to choose a selection from a REST API call. Click the numbers in the

below screenshot to learn more about the structure of an dropdown PMD widget.

 It's recommended that you use a PMD script to reshape data from root-level and nested-

fields. With a PMD script, you can call PMD functions that will efficiently manipulate data
when it's displayed on a page or submitted to outbound endpoints.









https://developer.workday.com/documentation/oli1581402304020
https://developer.workday.com/documentation/oli1581402304020#section-calling-pmd-functions-and-instance-methods
https://developer.workday.com/documentation/kdd1594147277519

dropdown widget

The dropdown widget creates a prompt that enables users to select an option from a list of options.

Use dropdown on edit pages when you want the user to select a single option from a dropdown list. You can also use

the dropdown tag with the dropdownEditButton.



https://developer.workday.com/documentation/ifx1512428281960

Values

Specify values with endpoint data, which must be a list containing the id and descriptor fields. Using the values

attribute is the most common way to populate a list.



https://developer.workday.com/documentation/ifx1512428281960

onChange will trigger the PMD script

When the user selects an option from the dropdown list, the populateInstanceList function will run and populate the

next list with organizations that are the org type that the user picked from the list.



valueOutBinding

Use the valueOutBinding attribute to define the variable within the context of the page widget.

PR E V I E W YO U R C HA NG E S I N A PP PR E V I E W

Preview Your Changes in App Preview

1. Click the App Preview icon in the upper-right corner of the Content Panel.

2. If the "Data Source Required" message appears in the App Preview panel, click the Manage Data
Source icon (right-corner of the window), and login to your development tenant.

3. Click the dropdown list so that you can check that it correctly displays a list of organization types, as

shown in the image below.

3



https://developer.workday.com/documentation/lmd1529983805787#section-defining-flow-variables-on-valueoutbinding-attributes

Open App Preview and test the dropdown list to make sure that it is populated with
organization types.

Download the Code
The .rtf file below contains the final code for this activity. You can use the file as a reference for each task.

Activity2.3.rtf
6.3 KB

https://articulateusercontent.com/rise/courses/4Zw8cl1zOsUTMAiFSrGI0-QHWCw7v7T6/ambRPKFITp--eNOx-Activity2.3.rtf

A C T I V I T Y 2 .4 : C O NFI G U R E A L I S T T HAT W I L L D I S PL AY
O R G A NI ZAT I O N NA M E S

In the next activity, you'll use the instanceList widget that will enable
users to search, and select from, a list of organizations.

This quiz will check your understanding of the concepts discussed in this tutorial.

Lesson 6 of 6

Christopher Johnson

Knowledge Check

Question

01/10

To configure a PMD as an edit page that will accept user inputs, which of the following

must be done? (Select all that apply.)

Add outboundEndPoints.

Add EndPoints.

Add “pageType” : “edit page” to the page’s presentation component.

Add dataProviders to the page.

Question

02/10

From the list below, choose the two attributes that you must put in the dropDownButton's

values array in order to navigate to another page in your app?

commandHttpMethod

label

enabled

taskReference

Question

03/10

What taskReference attribute would you use to send key-value parameters to the next

page?

type

taskId

parameterBindings

values

Question

04/10

Which of the following tags would you use to store a value that a user selects from a list,

such as a dropdown or checkBoxList widget?

instanceLoop

outboundEndPoint

valueOutBinding

values

Question

05/10

Which of the following are reasons to use instanceList? (Select all that apply.)

Create a multilevel list that enables users to drill down a folder-like structure
and select a value from the last level (leaf node).

Reshape data retrieved from root-level and nested fields.

Display a list on an edit page from which a user can search and select
values.

Instantly populate another list with values.

Associate a related actions menu with each item on a list that is displayed
on a view page.

Loop through a data source and display the returned instances in a list.

Question

06/10

What are the two attributes that you would use to define a collection of variables in the

values array of an outboundVariable?

name and label

variableScope and flow

flowVariable and values

outboundPath and value

Question

07/10

What tag would you use to iterate through the data and return a subset of values located in

root-level and nested fields?

instanceList

instanceListLoopTag

flow

loopFlow

Question

08/10

The most common way to populate a list is to use the list widget’s values attribute to

specify endpoint data. From the list below, identify the fields located at the root-level of the

endpoint data that are used to populate the list. (Select all that apply.)

descriptor

name

label

id

Question

09/10

 If you want override the root-level descriptor field of endpoint data so that you can display

values from another field, what attribute would you use?

flowVariable

displayKey

name

enabled

Question

10/10

As a best practice, what is the best method to reshape data retrieved from endpoint data?

instanceListLoopTag

PMD script with the values attribute

instanceLoop

on

